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Energy management of a fuel cell/ultracapacitor hybrid power system aims to optimize energy effi-
ciency while satisfying the operational constraints. The current challenges include ensuring that the
non-linear dynamics and energy management of a hybrid power system are consistent with state and
input constraints imposed by operational limitations. This paper formulates the requirements for energy
management of the hybrid power system as a constrained optimal-control problem, and then trans-
uel cell
ybrid power system
nergy management
daptive optimal control

forms the problem into an unconstrained form using the penalty-function method. Radial-basis-function
networks are organized in an adaptive optimal-control algorithm to synthesize an optimal strategy for
energy management. The obtained optimal strategy was verified in an electric vehicle powered by com-
bining a fuel-cell system and an ultracapacitor bank. Driving-cycle tests were conducted to investigate
the fuel consumption, fuel-cell peak power, and instantaneous rate of change in fuel-cell power. The
results show that the energy efficiency of the electric vehicle is significantly improved relative to that

l stra
without using the optima

. Introduction

A fuel-cell hybrid power system (FCHPS) for an electric vehicle
ugments the fuel cell with a reversible energy storage system (ESS)
o that the overall system can cope with the power demands of the
ehicle. The ESS can be implemented with either an ultracapaci-
or bank or a rechargeable battery [1–3]—this work considers the
ltracapacitor-based ESS. The chief merit of this technology is that
he power-capacity rating of the fuel-cell system (FCS) is required
o meet the average demand only, rather than the peak demand.
his makes the FCHPS more cost-effective and energy-efficient than
sing the fuel cell alone in powering the vehicle. Secondly, rapid

oad variations may induce oxygen starvation and thereby cause

ermanent damage to the proton-exchange membranes of the fuel
ell. In contrast, the ultracapacitor exhibits superior performance
n providing peak power, despite its significantly low energy den-
ity. Combining an FCS and an ultracapacitor bank can provide a

Abbreviations: FCHPS, fuel-cell hybrid power system; ESS, energy storage
ystem; FCS, fuel-cell system; EMS, energy-management strategy; AOC, adaptive
ptimal control; RBF, radial basis function; SoC, state of charge; VCC, voltage-and-
urrent controller.
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power system with both high power and energy densities. Thirdly,
the FCS generates electric power directly from hydrogen, but a
reverse power flow is impossible; the ultracapacitor bank therefore
provides a reservoir for the regenerative use of electricity.

As shown in Fig. 1, the FCHPS uses DC/DC converters to inter-
face various types of power devices. This may be accomplished
using a unidirectional boost converter that interfaces with the FCS
and the DC bus, and protects the FCS from damage by reverse
current. Alternatively, the ESS may employ a bidirectional buck-
boost converter to allow bidirectional power flow, which allows
the ESS to not only deliver the shared peak power but also capture
the electricity for regenerative utilization. The FCHPS employs an
energy-management strategy (EMS) to achieve an optimal power
split between distinct power sources that improves the energy uti-
lization. Based on a model-predictive control methodology, Vahidi
et al. [4] developed a current-management strategy to avoid the
problems of oxygen starvation, air-compressor surge and choke
in FCSs. Chen et al. [5] used multiple-model predictive control to
optimize the power usage and the control of oxygen. Zhu et al.
[6] adopted a cluster-weighted modelling algorithm to identify
load transients and determine the optimal power split between
the FCS and ESS. A transient-load recognition technique based on

wavelet-transform algorithms for hybrid energy sources (includ-
ing a fuel cell, battery and ultracapacitor) was proposed in [7].
Jiang [8] investigated using an agent-based power-sharing method
for implementing a distributed control scheme when combin-
ing multiple power sources. An EMS based on fuzzy logic was

dx.doi.org/10.1016/j.jpowsour.2010.11.127
http://www.sciencedirect.com/science/journal/03787753
http://www.elsevier.com/locate/jpowsour
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cture of the FCHPS.
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Fig. 1. Archite

tudied in [9–12]. Moreover, an EMS may be derived with the
elp of optimization theory. Based on the equivalent consumption-
inimization strategy, Paganelli et al. [13] and Rodatz et al. [14]

resented a local optimal scheme that evaluated the cost function
ased on the hydrogen consumption and the equivalent fuel con-
umption of the ESS. Feroldi et al. [15] formulated an EMS as a local
ptimization problem subject to a set of operational constraints,
nd used a constrained non-linear programming method to obtain
solution. Delprat et al. [16] and Bernard et al. [17] obtained the
MS by the forward iteration of a state equation, a costate equation
nd a stationary equation while assuming that the initial costate
ector is available. This approach provides a non-causal solution
ecause the entire driving cycle must be known before obtaining
he initial costate vector, and the convergence of this algorithm is
ensitive to parameter errors.

In the present work, the requirements for the EMS are formu-
ated as an optimal-control problem subject to a set of state and
nput constraints imposed by operational limitations. The penalty-
unction method [18] is then used to transform the constrained
ptimal-control problem into an unconstrained form. An adaptive
ptimal-control (AOC) algorithm is subsequently developed and
ustomized for synthesizing an optimal EMS. The AOC algorithm
s deduced from the minimum principle of optimal control, rather
han by manipulating the Bellman equation, as in adaptive dynamic
rogramming [19–21]. Radial-basis-function (RBF) networks are
mployed when constructing the AOC algorithm. The obtained
ptimal EMS was evaluated in the application of an electric vehi-
le powered by an FCHPS. The results from driving-cycle tests
emonstrate the effectiveness of the optimal EMS. Here we focus
n formulating a constrained optimal-control problem for energy
anagement of an FCHPS and on developing an AOC methodology

or synthesizing an optimal EMS through reinforcement learning.
This paper is organized as follows. Section 2 derives a model

or the FCHPS, and the requirements of its EMS are formulated as
constrained optimal-control problem. Section 3 develops an AOC
lgorithm that is capable of synthesizing an optimal EMS by learn-
ng training data. Section 4 investigates the obtained optimal EMS

ith driving-cycle tests of an electric vehicle powered by an FCHPS.
inally, conclusions are drawn in Section 5.

. Formulation of the energy-management problem

.1. Model for the FCHPS
A mathematical model for the FCS can be deduced from physi-
al laws and the operating conditions. If the gas pressure, ambient
emperature and humidity are all well-regulated inside the FCS, its
haracteristic curve of efficiency versus net power would exhibit
0 5 10 15 20 25 30 35 40 45 50

Fuel cell power / kW

Fig. 2. Efficiency of a 50-kW fuel cell.

the result shown in Fig. 2. The power efficiency is low when the
FCS operates in a low-power mode since the peripheral systems of
the FCS consume an amount of power in maintaining the function-
ality of the overall system. In addition, the power efficiency reduces
in a high-power mode due to the physical nature of fuel-cell stacks.
Fig. 2 shows the overall efficiency of a 50-kW fuel-cell module as
calculated using ADVISOR software [22].

However, knowledge of the overall efficiency is not sufficient for
assessing the performance of an FCS, since the low efficiency in the
low-power mode (Fig. 3) is not significant due to the low absolute
power loss. Therefore, we gauged the performance of the FCHPS by
deriving the hydrogen consumption from the efficiency of the fuel
cell [11] as (see Fig. 3):

ṁH2 = PFC

LHV · �FC(PFC)
× 105%, (1)

where ṁH2 is the hydrogen-fuel consumption rate (g s−1),
LHV = 12,000 kJ g−1 is the lower heating value of hydrogen and the
additional 5% allows for the assumed loss of hydrogen due to the FCS
purging mechanism. A performance model of the FCS is obtained
by fitting the hydrogen-consumption curve in Fig. 3 with the third-
order polynomial function.

ṁfit(PFC) = a3P
3
FC + a2 · P2

FC + a1 · PFC + a0. (2)
Table 1 lists the fitting parameters in Eq. (2) with ṁfit in units of
g s−1 and PFC in units of 100 kW (this unit is adopted for power
to ensure that the polynomial fitting function does not contain
extremely large or small coefficients). An appropriate parameter
set can facilitate the convergence of the optimal solution search.
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Fig. 3. Hydrogen consumption of the 50-kW fuel cell.

Table 1
Curve-fitting parameters for a performance model.
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Manipulating an FCHPS involves controlling the DC/DC convert-
ers and managing how power is split among distributed power
sources. The converter-control loop typically responds 100–1000
times faster than the energy-management-strategy loop. There-
Parameter a3 a2 a1 a0

Value 4.1953 −2.0662 1.6944 0.0066

The ultracapacitor behaves similarly to a conventional capacitor.
revious studies have shown that an ultracapacitor can be modelled
s an equivalent circuit with constant parameters [3,23–25]. Fig. 4
hows the equivalent circuit model used in this study. According
o this model, the energy (E) stored in the ultracapacitor is linearly
roportional to the square of the capacitor voltage. The maximum
nergy (Emax) that can be stored in an ultracapacitor is limited by
ts rated voltage (vmax) according to

= 1
2
Cucv2

c = 1
2
Cuc

(
Pc
ic

)2
, (3)

max = 1
2
Cucv2

max. (4)

he state of charge (SoC) of an ultracapacitor is defined as the ratio
f E to Emax:

E

oC ≡

Emax
. (5)

As shown in Fig. 4, PESS denotes the power flow at the termi-
al nodes of the ultracapacitor, and Pc denotes the power passing
hrough internal capacitor Cuc. The convention used here is for dis-

Fig. 4. Model of an ultracapacitor as an RC equivalent circuit.
Fig. 5. Charge–discharge contour plot of an ultracapacitor bank.

charging power and charging power to have positive and negative
values, respectively. The parasitic resistance (Ruc) results in signif-
icant power loss during charging and discharging, and leads to a
charge–discharge contour plot that takes the form

Pc(SoC,PESS) =
(

1 −
√

1 − 2RucCuc
SoC · Emax

PESS

)
· SoC · Emax

RucCuc
. (6)

Fig. 5 shows the deduced charge–discharge contour plot of an
ultracapacitor. The dynamics of an ultracapacitor can be modelled
by a first-order difference equation:

SoC(k + 1) = SoC(k) − Pc(SoC(k), PESS(k)) · �T
Emax

, (7)

where k (with k = 0, 1, 2, . . .) is the index of the time steps and�T
is the sampling period.

2.2. Objective of energy management
fore, as shown in Fig. 6, the entire EMS of the FCHPS can be divided

Fig. 6. Levels of the EMS and VCC in an FCHPS.
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nto a bottom level and a top level associated with the fast- and
low-responding loops, respectively. The bottom level is respon-
ible for the stable control of voltage and current for the DC/DC
onverters; at this level, the voltage-and-current controller (VCC)
cts as an interface between the top level and the physical compo-
ents of the FCHPS. The top level implements the EMS that directs
he FCHPS to minimize the cost function.

Methods used to control DC/DC converters are described in
26–28]. In the present study it was assumed that the converter-
ontrol loop performs so effectively that the steady-state errors
nd transient behaviours of the DC/DC converters can be neglected.
hus, the transfer function of the VCC was approximated as a con-
tant value of 1, allowing the problem of energy management of the
CHPS to be formulated as a constrained optimal-control problem.
sing the polynomial model of Eq. (2) of the hydrogen consump-

ion, a cost function for assessing the performance of the FCHPS can
e written as

′ = ˚(K ,SoC(K)) +
K−1∑
k=0

ṁH2 (PFC(k)) ·�T, (8)

here K denotes the final step of the test cycle, and

(K ,SoC(K)) = (SoC(K) − SoC(0))TPK (SoC(K) − SoC(0)), (9)

hich minimizes the difference between the final SoC [SoC(K)] at
he end of the driving cycle and the initial SoC [SoC(0)]. This restric-
ion ensures that the vehicle is on average powered by the FCS. This
ost function accounts for the total hydrogen consumption during
n entire driving cycle. The goal of energy management is to mini-
ize the cost function of Eq. (8), subject to the constraints imposed

y the ultracapacitor dynamics given by Eq. (7) and the operational
imitations of the FCS and the ESS.

The principle of energy conservation means that the following
quality constraint holds for this power system:

FC(k)�1 + PESS(k)�2 = PL(k), (10)

here �1 and �2 are the efficiencies of DC/DC converters. In real-
orld applications, the operating ranges of the FCS and the ESS

hould be appropriately restricted so as to protect the high-power
quipment from damage. The lower power limitation (PFCmin

> 0),
s applicable in the FCS because it cannot store electrical energy.
he FCS may be damaged permanently or it may degrade rapidly
f any reverse current occurs, and hence PFCmin

must be sufficiently
reater than 0 to avoid violating this constraint. When the FCS is
perating at a high power, the maximum power that can be drawn
s limited to the rated value, PFCmax , since excessive output power

ay lead to oxygen starvation that would damage the FCS. Thus,
he inequality constraint on the FCS power takes the form

FCmin
≤ PFC(k) ≤ PFCmax . (11)

In addition to the need to consider the magnitude of the FCS
ower, the rate of change of the FCS power also should be lim-

ted to ensure that the air compressor (which has a slow dynamic
esponse) can cope with the power fluctuations. Thus, the second
nequality constraint should be of the form

PFC,fall ≤ d

dt
PFC(k) ≤�PFC,rise. (12)

heoretically, the upper bound of the SoC (SoCmax) of the ESS is 1,
ut in practice this value is set somewhat smaller so as to pro-
ide a margin for safety. The lower bound of the SoC (SoCmin)
s required because the power-conversion efficiency of the buck-

oost converter is rather poor when the ESS voltage is extremely

ow. Therefore, the third inequality constraint on the operation of
CHPS takes the form

oCmin ≤ SoC(k) ≤ SoCmax. (13)
r Sources 196 (2011) 3280–3289 3283

Based on Eqs. (7)–(13), the energy-management problem can be
formulated as a finite-time, constrained optimal-control problem
(see Problem 1).

Problem 1.

min
{u(k)}K−1

k=0

J′(x(0),U) = min
{u(k)}K−1

k=0

{
˚(K, x(K)) +

K−1∑
k=0

ṁH2 (u(k)) ·�T
}
,

(14)

subject to

x(k + 1) = f ′(x(k)),

h(x, u) = 0,

and

gi(x, u) ≥ 0 (i = 1,2, . . . ,6),

where x(k)� SoC(k), u(k)�PFC(k), U is a history (policy) of u(k) and
k denotes the final time. The state equation corresponds to Eq. (7),
equality constraint h(x, u) = 0 corresponds to the constraint in Eq.
(10) and the inequalities in Eqs. (11)–(13) are reformulated in the
form of gi(x, u) ≥ 0 as follows:

g1 = u(k) − PFCmin
≥ 0,

g2 = PFCmax − u(k) ≥ 0,

g3 = u(k) − u(k − 1) −�PFC,fall�T ≥ 0,

g4 =�PFC,rise�T − u(k) + u(k − 1) ≥ 0,

g5 = x(k) − SoCmin ≥ 0,

g6 = SoCmax − x(k) ≥ 0.

2.3. Transformation of constrained optimal control

The penalty-function method [18] and Bellman’s principle of
optimality [29] can be used to transform Problem 1 into an infinite-
time, unconstrained optimal-control problem (see Problem 2).

Problem 2.

min
{u(k)}∞k=0

J(x(0),U) = min
{u(k)}K−1

k=0

{
J∗(x(K)) +

K−1∑
k=0

L(k)

}

= min
{u(k)}K−1

k=0

{
J∗(x(K)) + J′(x(0),U)

+ 1
2

6∑
i=1

K−1∑
k=0

sig
2
i (x(k), u(k), k)H(gi)

}
, (15)

subject to x(k + 1) = f(x(k)), where J∗(x(K)) =˚(K, x(K)) (see Eq. (9)),

H(gi) =
{

0, if gi ≥ 0
1, if gi < 0

,

and si is the penalty coefficient.
Substituting the equality constraint of Eq. (10) into the ultraca-

pacitor model of Eq. (7) yields
x(k + 1) = f (x(k)) = x(k) + (x(k), u(k), PL(k)), (16)

where

 (x(k), u(k), PL(k)) = −Pc
(
x(k),

PL(k) − u(k)�1

�2

)
· �T
Emax

. (17)
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he inequality constraints in Problem 1 are transformed into a set
f penalty functions to form the adjoined cost function in Problem
. This transforms the EMS problem into solving an infinite-time,
nconstrained minimization problem, and its solution is expected
o weakly converge towards an optimal solution to Problem 1 [18].

. Synthesis of an EMS with the AOC algorithm

.1. Necessary conditions for optimality

Considering the minimization problem of the adjoined cost
unction (J(u)) subject to the ultracapacitor model in Eq. (16), and
ntroducing a costate variable (�(k)) makes it possible to transform
his problem into the minimization of the Hamiltonian without any
onstraint [29]. The Hamiltonian is defined as

k � L(k) + f (k)�(k + 1), (18)

here f(k)� f(k, x(k), u(k)). The necessary conditions for optimality
re obtained from the minimum principle as follows:

(k + 1) = f (k), (19)

= ∂L(k)
∂u(k)

+
(
∂f (k)
∂u(k)

)T
�∗(k + 1), (20)

∗(k) = ∂L(k)
∂x(k)

+
(
∂f (k)
∂x(k)

)T
�∗(k + 1), (21)

(
∂L(0)
∂x(0)

)
+
(
∂f (0)
∂u(0)

)T
�∗(1)

)T
x̃(0) = 0, (22)

�∗(K) − ∂J∗(K, x(K))
∂x(K)

)T
x̃(K) = 0, (23)

here ‘*’ denotes an optimal value, x̃(K) and x̃(0) are arbitrary vec-
ors corresponding to the variations, and J*(K, x(K)) is the optimal
erminal cost function. The AOC method assumes that initial state
(0) is either fixed or free, and that final state x(K) is free. Thus,
*(0) = 0 may satisfy the initial-point condition in Eq. (22), and the
nd-point condition of Eq. (23) gives �*(K) = ∂ J*(K, x(K))/∂ x(K).

.2. The AOC-EMS system

Solving the optimality conditions for an optimal EMS is chal-
enging since the adjoined cost function, J(u), is not in quadratic
orm and the dynamical constraint (i.e., state equation) is non-
inear. While linear optimal-control theory is unable to provide
n analytical solution to this problem, the AOC method may be
mplemented with neural networks to obtain an optimal strategy.
ig. 7 shows a block diagram of the AOC-EMS system. The AOC
lgorithm consists of three blocks: the action network, û(k|w); the
ritic network, �̂◦(k + 1|˛); and the shadow-critic network, �̂(k|˛);
herew and˛denote the synaptic weights of neural networks. The

hadow-critic network estimates the optimal costate at the present
ime step, and the critic network projects this quantity to the next
ime step. The action network is responsible for the EMS while
he critic and shadow-critic networks facilitate an adaptive critic

echanism to guide the improvement of the action network using
he reinforcement-learning methodology. The critic and shadow-
ritic networks have identical topology and synaptic weights but
ifferent inputs and outputs.
The optimality conditions in Eqs. (20) and (21) may not hold
way from an optimal trajectory. In fact, we have

(k) = ∂L(k)
∂u(k)

+
(
∂f (k)
∂u(k)

)T
�(k + 1), (24)
r Sources 196 (2011) 3280–3289

and

�D(k) = ∂L(k)
∂x(k)

+
(
∂f (k)
∂x(k)

)T
�(k + 1) +

(
∂u(k)
∂x(k)

)T
ı(k). (25)

It is evident that optimality requires ı(k) = 0 and �D(k) =�*(k). Let
l be the index for the version of the synaptic weights. Substituting
the neural networks for corresponding terms in Eqs. (24) and (25)
yields

ı(k) =
{
∂L(k)
∂u(k)

+
(
∂f (k)
∂u(k)

)T
�̂◦(k + 1|˛l)

}
u(k)=û(k|wl)

, (26)

and

ε(k) = �D(k) − �̂(k|˛l) = ∂L(k)
∂x(k)

+
(
∂f (k)
∂x(k)

)T
�̂◦(k + 1|˛l)

+
(
∂û(k|wl+1)
∂x(k)

)T
ı(k) − �̂(k|˛l), (27)

where ı(k) denotes the action residual and ε(k) is the critic error.
These two quantities result from non-optimality or from approxi-
mation errors in neural networks.

3.3. Action-network improvement routine

The adjoined cost function in Problem 2 can be written as a
recurrence relation:

J(k, x(k),U) = L(k) + J(k + 1, x(k + 1),U), (28)

where U denotes a history of u(k). Bellman’s principle of optimality
[29] is used to obtain

min
{u(k)}∞k=0

J(k, x(k),U) = min
u(k)

{L(k) + J∗(k + 1, x(k + 1))}. (29)

The action-network improvement routine is designed to minimize
the cost function in the minimization operation. The gradient of the
adjoined cost function with respect to w is

∂J(k)
∂w

= ∂L(k)
∂w

+ ∂J∗(k + 1)
∂w

=
(
∂u(k)
∂w

)T {
∂L(k)
∂u(k)

+
(
∂f (k)
∂u(k)

)T
�∗(k + 1)

}
, (30)

where �*(k)� ∂ J*(k, x(k))/∂ x(k) and J(k)� J(k, x(k), U). Substituting
the network output for the corresponding terms yields

∂J(k)
∂w

=
(
∂û(k|w)
∂w

)T {
∂L(k)
∂u(k)

+
(
∂f (k)
∂u(k)

)T
�̂◦(k + 1|˛)

}
u(k)=û(k|w)

.

(31)

Using the gradient-descent method, the generalized delta rule
for updating the action network is

wl+1 = wl +�wl, (32)

where

�wl = �a�wl−1 −�a ∂J(k)
∂w

∣∣∣∣
w=wl

. (33)

Substituting the gradient in Eq. (31) into Eqs. (32) and (33) yields

the action-network updating rule:

�wl = �a�wl−1 −�a

{(
∂û(k|w)
∂w

)T
ı(k)

}
w=wl

, (34)
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1 − (2RucCuc/Emax) · ((PL(k) − u(k)�1)/x(k)�2)

−
(

1 −
√

1 − 2RucCuc
Emax

· PL(k) − u(k)�1

x(k)�2

)
· �T

RucCuc
. (39)
Fig. 7. The A

here �a denotes the momentum coefficient and �a denotes the
earning rate of the action network.

.4. Critic-network learning routine

The shadow-critic network is updated using a supervised learn-
ng method by minimizing the instantaneous sum of squared critic
rrors at time step k:

c(k) = 1
2
εT (k)ε(k) = 1

2
||�D(k) − �̂(k|˛)||22. (35)

sing the gradient-descent method yields the generalized delta
ule for updating the shadow-critic network:

l+1 = ˛l +�˛l, (36)

ith

˛l = �c�˛l−1 −�c ∂Ec(k)
∂˛

∣∣∣∣
˛=˛l

= �c�˛l−1 +�c ∂�̂(k|˛)
∂˛

∣∣∣∣
T

˛=˛l
ε(k)

(37)

here�c is the momentum coefficient,�c is the learning rate of the
hadow-critic network and gradient ∂�̂(k|˛)/∂˛ can be obtained
rom the back-propagation of the shadow-critic network. The
hadow-critic network receives updates stepwise (as in the instan-

aneous mode), while the critic network obtains a duplicate of the
pdated weights in turn. In calculating Eq. (27), the term �̂◦(k + 1|˛)

s taken from the critic network for k + 1 = 1, . . ., K − 1, and �D(K)
t the final step is substituted by the end-point condition; that is,
*(K) = ∂ J*(K, x(K))/∂ x(K).
MS system.

3.5. Plant model and Jacobian quantities

As illustrated in Fig. 7, a plant model is needed to predict the
step-ahead values of the plant states for computing the critic-
network outputs. Using the plant model in Eq. (16) allows the
Jacobian quantities appearing in Eqs. (26) and (27) to be written
as follows:

∂f (x(k), u(k))
∂u(k)

= (�1�T/�2Emax)√
1 − (2RucCuc/Emax) · ((PL(k) − u(k)�1/x(k)�2))

,

(38)

∂f (x(k), u(k))
∂x(k)

= 1 + (PL(k) − u(k)�1/x(k)�2)(�T/Emax)√
Fig. 8. A function that provides a smooth penalty transition.
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as a Gaussian function:

hj(x̄) = exp

(
−||x̄ − c̄j||2

2bj
2

)
, (43)

Table 4
Fig. 9. Architecture of the three-layer RBF network.

The derivatives of Lagrangian L(k) in adjoined cost function J(k)
ith respect to u(k) and x(k) are as follows:

∂L(k)
∂x(k)

=
∂
(

1
2

∑6
i=1sig

2
i
H(gi)

)
·�T

∂x(k)

= 1
2
�T ·

6∑
i=1

(
2sigi

∂gi
∂x

·H(gi) + sig2
i · ∂H(gi)

∂gi
· ∂gi
∂x

)
, (40)

∂L(k)
∂u(k)

= ∂ṁH2

∂u(k)
+
∂
(

1
2

∑6
i=1sig

2
i
H(gi)

)
·�T

∂u(k)
= (3a3u

2(k) + 2a2u(k)

+ a1) + 1
2
�T ·

6∑
i=1

(
2sigi

∂gi
∂u

·H(gi) + sig2
i · ∂H(gi)

∂gi
· ∂gi
∂u

)
.

(41)

(gi) is chosen to be a sigmoid function (instead of a discontinuous
tep function):
(gi) = 1
1 + exp(	gi)

, (42)

ince the function must be differentiable for the generalized delta
ule to be applicable, and hence must provide a smooth transition

able 2
arameters of the electric vehicle.

Parameter Symbol Value

Total mass M 2049 kg
Air drag coefficient Cd 0.31
Frontal area Af 2 m2

Air density Ra 1.23 kg m−3

Coefficient of rolling resistance fr 0.01
Acceleration due to gravity g 9.8 m s−2

able 3
arameters of the FCHPS.

Parameter Symbol Value

Maximum FCS power PFCmax 50 kW
Minimum FCS power PFCmin

5 kW
Maximum FCS rising power rate �PFC,rise 5 kW s−1

Maximum FCS falling power rate �PFC,fall −5 kW s−1

Internal resistance of ultracapacitor Ruc 0.035

Capacitance of ultracapacitor Cuc 52 F
Maximum ultracapacitor energy Emax 1625 kJ
Maximum SoC of ultracapacitor SoCmax 0.95
Minimum SoC of ultracapacitor SoCmin 0.25
Efficiency of boost converter �1 0.95
Efficiency of buck-boost converter �2 0.95
time / s

Fig. 10. Velocity time course and corresponding power demands of the NEDC.

between legal and illegal regions of inequality constraints so that
it is differentiable at critical point gi = 0. Larger value of 	 for Eq.
(42) leads to a steeper slope in transition region and hence better
approximation to the ideal case as defined in Problem 2. Fig. 8 shows
a plot of this function for 	 = 50 used in this study.

3.6. Neural network architecture for the AOC-EMS system

In the AOC-EMS system, the associated neural networks are
implemented with RBF networks [30]. Fig. 9 shows the architec-
ture of RBF networks in which each hidden neuron hj is modelled
Fuzzy-logic rules for the EMS.

PESS PL

NB NS Z PS PB

SoC
Z NB NB NB NS Z
PS NB NS Z PS PB
PB Z Z Z PS PB

P, positive; N, negative; B, big; S, small; Z, zero.

Fig. 11. Charge–discharge contour plot of the ultracapacitor bank generated by the
fuzzy-logic rules.
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Fig. 12. Trajectories of energy managem

here x̄ denotes the input vector of the RBF network, c̄j denotes
he centre vector and bj is the width of the Gaussian func-
ion. The functional mapping of an RBF network can be written
s

¯ =
Nh∑
j=1

w̄jhj(x̄) = w̄1h1(x̄) + w̄2h2(x̄) + · · · + w̄NhhNh (x̄), (44)

Fig. 13. Trajectories of energy management o
tained by the fuzzy-EMS for the FCHPS.

where w̄j is a vector of synaptic weights connecting the j-th hidden
neuron to output vector ȳ. The partial derivatives pertaining to the
RBF network are as follows:

¯
∂y
∂w̄j

= hj(x̄), (45)

∂ȳ

∂b
= w̄j · hj(x̄) · ||x̄ − c̄j||2

b3
j

, (46)

btained by the AOC-EMS for the FCHPS.
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Fig. 14. Comparison of the hydrogen consumptions in five standard driving cycles.
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∂ȳ

∂c̄j
= w̄j · hj(x̄) · (x̄ − c̄j)T

b2
j

, (47)

∂ȳ

∂x̄
= −

Nh∑
j=1

w̄j · hj(x̄) · (x̄ − c̄j)T
b2
j

. (48)

hese partial derivatives can be used to derive the gradient quanti-
ies such as ∂û(k|w)/∂x(k) and ∂�̂(k|˛)/∂˛ for the AOC-EMS system.

. Validations

The effectiveness of the AOC-EMS system in managing the
nergy usage of an electric vehicle powered by an FCHPS was inves-
igated. Table 2 lists the model parameters of the electric vehicle.
he FCHPS consisted of a 50-kW FCS and a bank of ultracapacitors.
ith the power-train parameters listed in Table 3, the electric vehi-

le was capable of accelerating from 0 to 100 km in 10 s if the initial
oC of the ESS was greater than 70%. The operational limitations of
he power devices, stated as [min, max], were as follows: [5, 50] kW
or the fuel-cell power, [−5, 5] kW s−1 for the power-variation rate
f the fuel cell and [0.2, 0.95] for the SoC of the ESS bank.

The AOC-EMS system was tested in five standard driving
ycles: the New European Driving Cycle (NEDC), the UDDS (Urban
ynamometer Driving Schedule), the Highway Fuel Economy Test

HWFET), Aggressive Driving Cycle (US-06), and the FTP (Federal
est Procedure). Fig. 10 illustrates the velocity time course for the
EDC and the corresponding power demands.

For comparison, a fuzzy-logic-based EMS (fuzzy-EMS) with lin-
uistic rules constructed by an expert was also investigated for
he same driving cycles. Depending on the load power, PL(k) and
oC(k) of the ESS, the fuzzy-EMS performed a linguistic inference
ased on the rules listed in Table 4 to generate the correct power-
plit command of the ESS bank. The principal concept underlying
he applied fuzzy rules was ensuring that the fuel cell satisfied the
ower demands while maintaining the SoC of the ESS bank within
he permitted range. The charge–discharge contour plot of the ESS
ank generated by the fuzzy-EMS is shown in Fig. 11.

Figs. 12 and 13 show the test results for the fuzzy-EMS and AOC-
MS, respectively. A fair comparison was ensured by requiring each
est case to meet the condition that the final SoC after completing
cycle was within ±0.5% of the initial SoC. The total hydrogen con-

umption over the NEDC was 129.9 g for the fuzzy-EMS and 122 g
or the AOC-EMS. The results show that the AOC-EMS not only min-
mized the hydrogen consumption but also significantly reduced
oth the peak power and the power-variation rate of the fuel
ell.

The results of applying the designed strategy in the five driving
ycles are compared with those for the electric vehicle powered by
fuel cell alone in Fig. 14. The average improvement in hydrogen

onsumption was 23.3% for the AOC-EMS and 18.7% for the fuzzy-
MS.

The performance of the synthesized AOC-EMS was evaluated
urther. Fig. 15 illustrates the fuel-cell power distribution with
he AOC-EMS for three types of driving cycle. In the NEDC, which
onsists of frequent accelerations and decelerations, most of the
uel-cell power was used in the low-power region, meaning that
he ultracapacitor bank can greatly minimize the burden on the
CS in an urban-like driving pattern. In the HWFET the vehicle is
riven in a highway-like pattern, which leads to a higher sustained
emand for electrical power; the results show that the power dis-

ribution shifted towards the high-efficiency region of the fuel-cell
fficiency, corresponding to a higher average power. Under the US-
6 test, which contains both urban-like and highway-like driving
atterns, the fuel-cell power distribution was concentrated in the
egion characterized by extremely low hydrogen consumption and
Fuel-cell net power / kW

Fig. 15. Fuel-cell net-power distribution with AOC-EMS applied in the NEDC,
HWFET and US-06.

highest efficiency. These observations confirm that the AOC-EMS
is indeed effective in minimizing fuel consumption under various
types of driving patterns.

5. Conclusions

This work formulated the complex requirements for the energy
management of the FCHPS as a constrained optimal-control prob-
lem. The penalty-function method was used to systematically

transform the (tedious) constrained problem into an unconstrained
problem. The results have shown that the AOC-EMS system is able
to synthesize an optimal EMS through reinforcement learning. The
AOC-EMS system requires a pretraining procedure to obtain con-
vergent weights for each neural network. In the pretraining phase,
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he full pattern of a driving cycle should be presented to this sys-
em so that all possible driving situations are taken into account. To
xecute the EMS, convergent pretraining should produce an action
etwork that constitutes an approximate optimal strategy of the
ptimal-control problem. The pretrained action network can be
pplied in a stochastic real-time execution without prior knowl-
dge of future driving patterns. The AOC-EMS system can also fine
une the trained action network through online learning in order
o adapt to a real-world environment.
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